Uniqueness of the modified Schrödinger map

نویسندگان

  • Jun Kato
  • Herbert Koch
چکیده

We establish the local well-posedness of the modified Schrödinger map in H3/4+ε(R2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On uniqueness in the inverse conductivity problem with local data

The inverse condictivity problem with many boundary measurements consists of recovery of conductivity coefficient a (principal part) of an elliptic equation in a domain Ω ⊂ R, n = 2, 3 from the Neumann data given for all Dirichlet data (Dirichlet-to-Neumann map). Calderon [5] proposed the idea of using complex exponential solutions to demonstrate uniqueness in the linearized inverse condictivit...

متن کامل

GLOBAL EXISTENCE AND UNIQUENESS OF SCHRÖDINGER MAPS IN DIMENSIONS d ≥ 4

In dimensions d ≥ 4, we prove that the Schrödinger map initialvalue problem { ∂ts = s×∆s on R × R; s(0) = s0 admits a unique solution s : R × R → S →֒ R, s ∈ C(R : H∞ Q ), provided that s0 ∈ H ∞ Q and ‖s0 −Q‖Ḣd/2 ≪ 1, where Q ∈ S .

متن کامل

6 GLOBAL EXISTENCE AND UNIQUENESS OF SCHRÖDINGER MAPS IN DIMENSIONS d ≥ 4

In dimensions d ≥ 4, we prove that the Schrödinger map initialvalue problem { ∂ts = s×∆s on R × R; s(0) = s0 admits a unique solution s : R × R → S →֒ R, s ∈ C(R : H∞ Q ), provided that s0 ∈ H ∞ Q and ‖s0 −Q‖Ḣd/2 ≪ 1, where Q ∈ S .

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

On Dirichlet-to-neumann Maps and Some Applications to Modified Fredholm Determinants

We consider Dirichlet-to-Neumann maps associated with (not necessarily self-adjoint) Schrödinger operators in L2(Ω; dnx), where Ω ⊂ Rn, n = 2, 3, are open sets with a compact, nonempty boundary ∂Ω satisfying certain regularity conditions. As an application we describe a reduction of a certain ratio of modified Fredholm perturbation determinants associated with operators in L2(Ω; dnx) to modifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008